Search results for "reverse genetics"

showing 4 items of 4 documents

HorTILLUS—A Rich and Renewable Source of Induced Mutations for Forward/Reverse Genetics and Pre-breeding Programs in Barley (Hordeum vulgare L.)

2018

TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS ( Hordeum-TILLING-University of Silesia) population created for spring barley cultivar "Sebastian" after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The populatio…

0106 biological sciences0301 basic medicineTILLINGmedicine.medical_specialtyTILLINGMutantPopulationMutagenesis (molecular biology technique)Plant Sciencelcsh:Plant cultureBiologymedicine.disease_cause01 natural sciencesMNUreverse genetics03 medical and health sciencessodium azideMolecular geneticsmedicinelcsh:SB1-1110educationOriginal ResearchGeneticsMutationeducation.field_of_studybarleyfood and beveragesReverse genetics030104 developmental biologyHordeum vulgaremutation010606 plant biology & botanyFrontiers in Plant Science
researchProduct

An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes

2015

Item does not contain fulltext Defects in primary cilium biogenesis underlie the ciliopathies, a growing group of genetic disorders. We describe a whole-genome siRNA-based reverse genetics screen for defects in biogenesis and/or maintenance of the primary cilium, obtaining a global resource. We identify 112 candidate ciliogenesis and ciliopathy genes, including 44 components of the ubiquitin-proteasome system, 12 G-protein-coupled receptors, and 3 pre-mRNA processing factors (PRPF6, PRPF8 and PRPF31) mutated in autosomal dominant retinitis pigmentosa. The PRPFs localize to the connecting cilium, and PRPF8- and PRPF31-mutated cells have ciliary defects. Combining the screen with exome sequen…

PRPF31Pregnancy ProteinsInbred C57BLCiliopathiesMiceImmunologicCerebellumDatabases GeneticEye AbnormalitiesNon-U.S. Gov'tZebrafishExome sequencingMice KnockoutGeneticsResearch Support Non-U.S. Gov'tCiliumHigh-Throughput Nucleotide SequencingMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]GenomicsKidney Diseases CysticPhenotypeKidney DiseasesRNA InterferenceAbnormalitiesMultipleFunctional genomicsCiliary Motility DisordersGenetic MarkersEllis-Van Creveld SyndromeKnockoutJeune syndromeOther Research Radboud Institute for Molecular Life Sciences [Radboudumc 0]BiologyResearch SupportTransfectionRetinaArticlewhole-genome siRNA screenJoubert syndromeN.I.H.DatabasesCysticreverse geneticsResearch Support N.I.H. ExtramuralGeneticCerebellar DiseasesJoubert syndromeCiliogenesisSuppressor FactorsJournal ArticleSuppressor Factors ImmunologicmedicineAnimalsHumansAbnormalities MultipleGenetic Predisposition to DiseasePhotoreceptor CellsCiliaGenetic TestingCaenorhabditis elegansExtramuralMembrane ProteinsProteinsReproducibility of ResultsCell Biologymedicine.diseaseMice Inbred C57BLCytoskeletal ProteinsCiliopathyRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]HEK293 CellsMutationciliopathiesGenome-Wide Association StudyNature Cell Biology
researchProduct

Functional genomics of Lactobacillus casei establishment in the gut

2014

International audience; Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in…

Transposable elementLactobacillus caseiMESH: MutationMutagenesis (molecular biology technique)MESH: RabbitsGenomicsBiologyMESH: Genome BacterialGenomedigestive system03 medical and health sciencesIleumLactic acid bacteriaAnimalsMESH: AnimalsGene030304 developmental biologyMESH: MutagenesisGenetics0303 health sciencesMultidisciplinaryMESH: Lactobacillus casei030306 microbiologyMESH: Genomicsdigestive oral and skin physiologyfood and beveragesGenomicsbiology.organism_classificationReverse geneticsCommensalismLacticaseibacillus caseiPNAS PlusMutagenesisMESH: IleumMutationMESH: Genome-Wide Association StudybacteriaRabbitsFunctional genomics[SDV.AEN]Life Sciences [q-bio]/Food and NutritionGenome BacterialGenome-Wide Association Study
researchProduct

Identification of factors involved in dimorphism and pathogenicity of Zymoseptoria tritici

2017

A forward genetics approach was applied in order to investigate the molecular basis of morphological transition in the wheat pathogenic fungus Zymoseptoria tritici. Z. tritici is a dimorphic plant pathogen displaying environmentally regulated morphogenetic transition between yeast-like and hyphal growth. Considering the infection mode of Z. tritici, the switching to hyphal growth is essential for pathogenicity allowing the fungus the host invasion through natural openings like stomata. We exploited a previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) to generate a mutant library by insertional mutagenesis including more than 10,000 random mutants. To identify gene…

0301 basic medicineHyphal growthMutantlcsh:MedicinePlant SciencePathogenesisPathology and Laboratory MedicineDatabase and Informatics MethodsMedicine and Health Scienceslcsh:ScienceGeneticsMultidisciplinaryVirulenceOrganic CompoundsPlant Fungal PathogensFungal geneticsGenomicsGenomic DatabasesMutant StrainsChemistryPhysical SciencesResearch ArticleGene predictionGenes Fungal030106 microbiologyPlant PathogensMycologyBiologyResearch and Analysis MethodsFungal ProteinsInsertional mutagenesis03 medical and health sciencesAscomycotaGeneticsFungal GeneticsGene PredictionGeneOrganic Chemistrylcsh:ROrganismsFungiChemical CompoundsBiology and Life SciencesComputational BiologyPlant PathologyGenome AnalysisForward geneticsReverse geneticsBiological DatabasesPurinesMutationlcsh:QPLOS ONE
researchProduct